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SUMMARY 
A numerical prediction is obtained for the mean pressure field in the similarity region of a plane turbulent 
jet. An algebraic stress model, which introduces non-isotropic relations for the Reynolds stress components, 
is used to close the mean momentum equation. The full two-dimensional form of the transport equations is 
retained and the resultant equation set solved elliptically. The numerical prediction simulates many of the 
characteristics of the pressure field measured by experimental studies. However, the overall level of the 
predicted field is lower than the experimental values. The level obtained for the mean pressure field depends 
strongly on the prediction for the transverse normal Reynolds stress component (u2 u2). The pressure field 
is shown to represent a small negative contribution to the net streamwise momentum balance. 
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1. INTRODUCTION 

Turbulent jets represent a class of free shear flows with important industrial and environmental 
applications. Jets have also been used as ‘benchmark’ flows for evaluating turbulence models. 

In computational studies of jets the usual approach is to approximate the flow as a ‘boundary 
layer’ which may then be treated by a parabolic solution technique. Classical boundary layer 
flows are characterized by the fact that the transverse velocity is relatively small compared to the 
streamwise component; the flow itself is usually regarded as being relatively thin. Use of these 
assumptions in the transverse momentum balance then implies that the pressure gradient in the 
cross-stream direction is negligible. Thus the static pressure in the flow at any streamwise section 
is constant and equal to that in the external flow. For jets discharged into a quiescent ambient 
field the pressure gradient term used in the boundary layer equations is zero. 

In some ways a plane turbulent jet is different from the typical boundary layer flow envisaged 
above. For one thing a turbulent jet is not thin, at least in the sense of a flat plate boundary layer. 
Furthermore, at the edge of a plane jet the transverse velocity component, i.e. the entrainment 
velocity, is much larger than the streamwise velocity component, which goes to zero. Unlike an 
axisymmetric jet, a plane jet creates a non-zero entrainment flow pattern in the surrounding fluid. 

The fact that a jet is turbulent also has important implications for the mean pressure field. In 
a laminar jet the viscous contribution to the normal stress components is relatively small. 
However, for a turbulent jet the normal Reynolds stress components are of the same order of 
magnitude as the variation in mean pressure due to the flow. Previous studies have noted that the 
mean pressure field is closely related to the level of the Reynolds stress components. 

Given the above, it is of interest to investigate numerically the mean pressure distribution in 
a free turbulent shear flow such as the plane jet. Towards this end the present paper considers 
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a computational prediction for the pressure distribution in the similarity region of a plane 
turbulent jet discharged into uniform and initially quiescent surroundings. 

Knowledge of the mean static pressure distribution in a turbulent jet leads to a more precise 
understanding of the overall momentum balance. The classical theory of a turbulent jet’ begins 
with the principle of conservation of the streamwise momentum flux. However, Ramaprian and 
Chandrasekhara’ point out that for plane turbulent jets the ratio of the streamwise momentum 
flux to the initial value at the discharge plane varies significantly from experiment to experiment. 
Part of the variation may be accounted for by neglect of the contribution of the mean pressure to 
the streamwise balance. As it turns out, based on the computational study presented below, 
pressure accounts for approximately 7 %  of the streamwise momentum balance in a plane 
turbulent jet. 

Probably a more important factor in resolving the variation between different experimental 
studies is the different far-field boundary conditions associated with each specific e~periment .~ 
A clear understanding of the role of the pressure in the jet is helpful in determining the effect of 
different external flow conditions on jet flows. 

Most previous computational studies of jets, for example that of Hossain and Rodi: solved the 
boundary layer form of the equations parabolically. In contrast, the present study retained the full 
two-dimensional form of the transport equations and solved them elliptically. This approach 
enabled a numerical prediction for the mean pressure field to be obtained. 

The mean momentum equation was closed using an algebraic model for the Reynolds stress. 
Unlike a k--E model closure, the algebraic stress model introduced non-isotropic models for the 
normal Reynolds stress components. Since the level of the mean pressure field is closely related to 
the level of the Reynolds stress components, the algebraic stress model would be expected to yield 
a more realistic prediction for the mean pressure field than an isotropic eddy viscosity model. 

Only a limited number of experimental5 - ’ measurements are available for the mean pressure 
field in a plane turbulent jet. This is due in part to the difficulty of accurately measuring the 
pressure field in a free turbulent shear flow. One additional study* measured the pressure field in 
a turbulent rectangular jet. However, in the far field this flow more closely resembles an 
axisymmetric jet. To the author’s knowledge, no numerical prediction has yet been published for 
the pressure field in a plane turbulent jet. 

The remainder of the paper first briefly describes the mathematical model and numerical 
method. The computational results are then compared with the measurements of Hussain and 
Clark,’ the most recent and most comprehensive experimental study available. The prediction for 
the mean pressure field using the algebraic stress model is found to reproduce most of the 
essential features of the experimental data, although the level of the predicted field is generally 
lower than the measured data. 

2. MATHEMATICAL MODEL 

The mathematical model was based on the mean conservation equations for mass and 
momentum in a turbulent incompressible flow, i.e. 

where uppercase and lowercase letters denote mean and fluctuating components respectively. In 
the equations above Ui is the mean velocity and P is the hydrodynamic component of the mean 
pressure field. In the Cartesian tensor notation adopted, ‘, j ’  is used to denote partial differenti- 
ation with respect to ‘xi; repeated indices are summed over all possible values, j =  1,2,3.  
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In order to close the mean momentum equation, a turbulence model relation was required for 
the Reynolds stress (uiuj). In the present study the algebraic stress model of Gibson and 
Launderg was adopted. The algebraic model was obtained from the Reynolds stress transport 
equation by approximating the net convection and diffusion of (uiuj) using the corresponding 
terms in the transport equation for the turbulence kinetic energy k. The final form of the 
expression was as follows: 

( U i U j )  = $ ( k / E ) ( l -  C 2 ) ( P i j - $ d i j P K )  + $ d i j k ,  (3) 

$=(PK/&-l +Cl)-'. (4) 

p i j = -  ( u i u k )  u j ,  k - ( u j u k )  u i ,  k (5 )  

P K = - ( U i U j )  ui, j (6) 

where 

The expressions 

and 

are the shear production terms in the transport equations for the Reynolds stress and turbulence 
kinetic energy respectively. 

The final closed equation set also involved transport equations for the turbulence kinetic 
energy k and its dissipation rate E. The modelled form of the equations was as follows: 

where the turbulence time scale was given by T~ = k/& (where stands for mechanical). In each 
case the diffusion term was modelled using a transport coefficient based on the turbulent viscosity 
vt= C,  k 2 / &  and an effective turbulent Prandtl number, either aK or cE. 

For the two-dimensional plane flow considered, the final equation set consisted of the 
continuity equation, four transport equations for U1,  U 2 ,  k and E, and three algebraic relations 
for (u lul ) ,  ( u z u z )  and (u1u2). The values of the seven empirical constants used in the 
mathematical model are given in Table I. 

3. SOLUTION METHOD 

The mathematical equation set was solved numerically for the specific case of a plane turbulent 
jet. Most other studies, with the exception of Sini and Dekeyser" and Haroutunian and 
Launder,' ' first introduced boundary layer approximations and then solved the conservation 
equations parabolically. In contrast, the present study retained the full two-dimensional form of 
the equations and solved them elliptically. This approach enabled a prediction to be obtained for 
the mean pressure field. 

Table I. Turbulence model coefficients 

0.09 1 .o 1.3 1 44 1.92 2.2 0.55 



910 D. J. BERGSTROM 

The solution method followed the finite volume formulation of Raithby et ~ 1 . ’ ~  The equations 
were first discretized over a two-dimensional orthogonal curvilinear grid. A staggered grid 
configuration was used to prevent oscillations in the pressure field. The approximation of 
advected quantities at control volume faces used the weighted upwind profiles suggested by 
Raithby ef al. The discrete equations adopted an implicit formulation and retained the transient 
terms for computational purposes. In the iterative solution technique adopted, the mean velocity 
and pressure field were solved using the SIMPLEC algorithm. The solution process was 
terminated when the normalized residuals (per control volume) has been reduced to or less. 

Implementation of the turbulence model equations required special attention. The Reynolds 
stress components were incorporated into the mean momentum equations using the so-called 
‘stress-flux’ formulation.12 The effective turbulent diffusion was included in the mean momentum 
equations using eddy viscosity model relations, while the actual Reynolds stress component less 
the eddy viscosity contribution was ‘lagged’ in the source term. The most important advantage of 
such a numerical formulation is that it facilitates the use of the solution algorithms developed for 
laminar flow. 

The turbulence model equations for the Reynolds stress were embedded within the transport 
equation set in the following manner. For a given mean velocity field the transport equations for 
k and E were solved. The coupling of the equations to each other and to the algebraic stress model 
relations was based on the use of a constant turbulence time scale tM = k/e  for each iteration of 
the turbulence model. For given mean velocity gradients and turbulence time scale, discrete 
approximations to the algebraic equations were then solved iteratively in an efficient manner. 
Further details of this aspect of the numerical formulation are presented by Bergstrom et ~ 1 . ’ ~  

A schematic diagram of a plane turbulent jet is given in Figure 1. The Cartesian co-ordinate 
axes x1 and x2 represent the streamwise and transverse flow directions respectively. The jet is 
assumed to be discharged from a long narrow slot in a flat wall. At the wall the velocity 
components are assumed to be zero. The outer edge of the solution domain is located sufficiently 
far away from the centreline for the mean streamwise velocity to be zero. From symmetry it was 
only necessary to model the half-plane of the jet. 

c x1 

7 -c 

x 2  

Figure 1. Schematic diagram of a plane vertical jet 
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For the elliptic solution method adopted, boundary conditions were required on all four sides 
of the solution domain. The jet centreline was treated as an axis of symmetry. Along the wall the 
velocity components and the normal gradients of the turbulence kinetic energy and dissipation 
rate were set equal to zero. At the outer edge of the solution domain the transverse gradient of 
each velocity component was set equal to zero. Note that for a plane jet, in contradistinction to 
the axisymmetric case, the entrainment velocity does not go to zero in the far field but assumes 
a constant value for a given distance downstream of the slot. 

The fourth boundary condition pertains to the last downstream plane, where a zero-gradient 
outflow was imposed. For the streamwise velocity component this was the same as asserting 
a constant streamwise mass flux for each control volume in the last downstream plane. This is 
physically unrealistic in a jet flow in two regards. Firstly, the centreline velocity is decaying in the 
streamwise direction. Secondly, for a rectangular mesh this results in zero entrainment at the exit 
plane. Comparison of the solution fields, obtained using grids of different streamwise dimension, 
with each other and also with the similarity behaviour for a plane jet indicated that typically the 
influence of the outflow boundary condition was limited to a region approximately five slot 
widths upstream of the outflow plane. In the solution fields considered, care was taken to ensure 
that the influence of this approximation did not extend into the domain of interest. 

Boundary conditions were also required for the velocity components, the turbulence kinetic 
energy, the dissipation rate and the Reynolds shear stress at the slot. Initially, ‘top-hat’ profiles 
were selected with discharge turbulence levels of 

( k / U i ) o  =0.01, ( E D / u : ) ~  =0.001. 

As such the discharge flow from the slot represented a uniform, low-intensity turbulent stream. 
This initial approach was consistent with the fact that the level of grid resolution required to 
accurately model the flow field immediately downstream of the slot was beyond the scope of the 
present study. 

In order to assess the influence of the initial conditions at the slot on the developed region of 
the flow, a second set of profiles was implemented corresponding to the fully developed turbulent 
channel flow considered in the experimental study of Hussain and Clark.’ The grid was refined so 
that eight control volumes were located within the half-slot. The mean velocity profile corre- 
sponded to the experimental profile for flow C125. Since profiles for k, E and (u luz)  were not 
available from the original study, these values were approximated by curves typical of a fully 
developed turbulent channel flow. The review of Pate1 et al.l4 identifies typical near-wall behaviour 
for these parameters. As will be documented in Section 4, the specific initial conditions significantly 
affected the development region just downstream of the slot. 

The computational model used in the study involved numerous approximations. In order to 
demonstrate an acceptable level of grid independence, the velocity field was calculated on 
a number of different grids of different sizes and mesh densities. For a specific grid the size of the 
control volumes was varied to concentrate control volumes along the centreline and just 
downstream of the slot. In the present study attention was focused on the region 20-40 slot 
widths downstream of the discharge plane, for which pressure measurements were available. 
Within this region the prediction for the mean pressure field on different grids was compared in 
terms of the centreline pressure and the transverse pressure profile at x l / D  = 25. Two different 
grids were used for the final comparison, representing a variation in mesh density of approxim- 
ately 100%. The maximum variation in mean pressure on these two grids was less than 3%. 

The calculations presented below pertain to a rectangular grid extending approximately 60 slot 
widths in the streamwise direction and 21-5 slot widths in the transverse direction. The grid 
used 85 and 53 control volumes in the streamwise and transverse directions respectively, with 
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eight control volumes placed within the half-slot at the discharge plane. On the basis of the grid 
refinement analysis presented above, the solution was considered to be within a few per cent of 
truly grid-independent values. This variation was much less than the estimated error in the 
experimental data available for comparison. 

4. RESULTS 

The computational model was used to predict the solution field for a plane isothermal turbulent 
jet with a Reynolds number Re = U o  Dlv = 81 400 based on the exit centreline velocity U o  and slot 
width D. The numerical results for the mean pressure field are compared with the experimental 
data of Hussain and Clark,7 specifically flow C125, corresponding to a plane air jet, also with 
a Reynolds number of 81 400. The initial velocity profile in the experiment closely resembled 
a fully developed turbulent channel flow. Unless stated otherwise, all the numerical results 
presented below are also based on an initial velocity profile which closely resembled a turbulent 
channel flow. 

To begin, consider the prediction for the mean velocity field. Chen and Rodi15 show that in the 
similarity region of a plane jet the decay rate of the centreline velocity U ,  is given by 

and the velocity half-width b, grows linearly in the streamwise direction, i.e. 

S, = db,/dx = constant. (10) 

Both of these similarity relations are derived using the boundary layer form of the mean transport 
equations. The predicted values of the similarity parameters, A, = 2-2 and S, = 012, compare 
favourably with the recommended values A,=2.4 and S,=Oll of Chen and Rodi.15 

The development of the turbulence field is presented in Figure 2 in terms of the centreline 
turbulence intensity. Also shown is a smooth curve fitted to the data of Hussain and Clark.7 Both 
the numerical and experimental flow fields are characterized by a sharp rise in the centreline 
turbulence intensity within the first 20 slot widths and a very gradual increase to the similarity 
level thereafter. 

Also shown is the centreline turbulence intensity for the solution field obtained assuming 
uniform profiles for U1, k and E at the slot. Note that in the region just downstream of the slot the 
level of turbulence intensity is initially much higher and the development of the turbulence field 
significantly different. However, all three curves approach the same level for u , / U ,  along the 
centreline far downstream of the slot. Not surprisingly, the mean velocity field based on uniform 
profiles at the slot was also characterized by a rate of development more rapid than that of the 
experimental field. 

In the present study attention was focused on the region 20-40 slot widths downstream of the 
slot. For this region of the flow the distribution of the pressure field, referenced to the value of the 
ambient pressure at the discharge plane, is presented graphically in Figure 3 as viewed from the 
jet centreline. The pressure field forms a valley or ‘trough’ between the centreline and edge of the 
jet. Over most of the jet the pressure field is negative in value. The trough becomes both broader 
and shallower as the flow develops in the streamwise direction. The ambient pressure at the edge 
of the jet is seen to be almost uniform, even though the flow in this region is not zero. 

The mean pressure along the jet centreline, normalized using the discharge velocity U o ,  is 
presented in Figure 4. Also shown for comparison is a smooth curve fit to the experimental data 
of Hussain and Clark.’ Both distributions have similar shapes; however, the magnitude of the 
experimental curve is greater than that of the predicted curve. Both curves also indicate a small 
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Figure 2. Streamwise turbulence intensity along the centreline of a plane jet: - - -, data;’ -, ASM with channel 
profile; - - - -, ASM with uniform profile 
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Figure 3. ASM prediction of the mean pressure field in a plane jet 

region of positive pressure just downstream of the slot. A positive pressure was also measured at 
the slot exit plane by Quinn and Militzer* in their study of a turbulent free square jet. Although 
the prediction of a positive pressure in this region appears to be realistic, the sensitivity of the flow 
field to the level of grid refinement and specific turbulence conditions at the slot precludes further 
comment. 

Figure 5 plots the mean pressure profiles along consecutive transverse sections. In each case 
the mean pressure is normalized using the local value of the jet centreline velocity U,.  From 
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Figure 4. Mean pressure along the centreline of a plane jet: - - -, data;’ -, ASM 
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Figure 5. Profiles of the mean pressure in a plane jet: -- - -, data;’ A, 0, V ,  0 ,0 ,  ASM at x , / D = 2 0 , 2 5 , 3 0 ,  35,40 
respectively 
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Figure 5 one can conclude that the pressure profile for the predicted velocity field becomes 
self-similar within approximately 35 slot widths of the discharge plane. Also shown in Figure 5 is 
a smooth curve fitted to the experimental profile of Hussain and Clarka7 Their results suggest that 
self-similar behaviour was obtained by approximately x1 / D  = 20. Again the magnitude of the 
experimental profile is noticeably greater than the predicted value, especially in the region close to 
the jet centreline. Hussain and Clark’ acknowledged some uncertainty in their static pressure 
measurements due to the undetermined influence of turbulence. 

The magnitude of the mean pressure field is closely related to the level of the the transverse 
normal Reynolds stress component (u2uz ). Hussain and Clark7 show that for the similarity 
region where streamwise gradients can be neglected, integration of the transverse momentum 
equation between the edge of the jet and an internal point within the jet results in the following 
expression for the pressure: 

where the subscript ‘e’ denotes variables evaluated at the edge of the flow. 
First, consider the contribution of the transverse velocity component in equation (1 1). 

Figure 6 plots the transverse velocity component U z ,  normalized by the centreline velocity, 
across the jet. Also shown is the experimental profile of Ramaprian and Chandrasekhara,’ 
although they suggest their magnitude for U 2  at the outer edge is somewhat low. The transverse 
velocity reaches a maximum magnitude at the edge of the jet equal to the so-called entrainment 
velocity U z e .  For a plane jet this value is typically UZe/U,=OO6.’ While substantially less than 
the centreline velocity, the entrainment velocity is much larger than the local value of the 
streamwise velocity component, which goes to zero. 

Returning to equation (ll), since U 2  is always less than the value U z e  at the edge, a negative 
pressure follows from the positive value of the Reynolds stress component (u2u2) .  Figure 7 
shows the predicted profile for ( u z u z )  at xl/D=40, together with the experimental profile of 
Ramaprian and Chandrasekhara.’ The profile predicted by the algebraic stress model for (u2 u2 ) 
is greater than the experimental value. This implies that substitution of the experimental profile of 
Ramaprian and Chandrasekhara’ into equation (11) would yield even lower values for the 
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Figure 6. Profile of the transverse component of the mean velocity in a plane jet: - - -, data;2 -, ASM 
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Figure 7. Profile of the transverse normal Reynolds stress component ( u z u z )  in a plane jet: - - -, data;' -, ASM 
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Figure 8. Contribution of the Reynolds stress ( u l u l )  and mean pressure P to the balance of streamwise momentum in 
a plane jet: - - -, data;' -, ASM. M , = p ( l : D  at the slot 

magnitude of the mean pressure profile. Since the predicted magnitude of the pressure profile is 
already low relative to the measured value, this would seem to indicate some inconsistency 
between the two experimental studies. 

Finally, consider the contribution of the mean pressure field to the overall balance of stream- 
wise momentum in the jet. Integration of the streamwise momentum equation across the width of 
the jet yields the following relation: 

~ ~ ~ P L I : + P ( u , u , ) + P ) d X I = c o n s t a n t ,  (12) 
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which asserts conservation of the total jet momentum flux. In addition to the streamwise 
momentum p U  :, equation (12) also includes contributions from the streamwise Reynolds normal 
stress component p(u lu l )  and the mean pressure P. As pointed out by Ramaprian and 
Chandrasekhara,2 the momentum flux reported by different experimental studies varies signific- 
antly, assuming asymptotic values in the far downstream region which are both smaller and 
larger than the nominal discharge value at the slot. 

Figure 8 plots the streamwise variation of the integral of the normal Reynolds stress com- 
ponent (ulul) and the mean pressure P for the jet, together with the experimental results of 
Hussain and Clark.’ The contributions of (ul u l )  and P are positive and negative respectively 
and both appear to reach constant asymptotic values beyond xl/D= 25. The numerical results 
presented in Figure 8 imply that the contribution of p V :  to the total momentum flux in equation 
(12) decreases to an asymptotic value of approximately 95% of the initial value p U : D  at the slot. 
The magnitude of the contribution of the pressure field to the integral in equation (12) is 
approximately 7%, that of the normal Reynolds stress approximately 14%. 

5. CONCLUSIONS 

The present study considered a numerical prediction for the mean pressure field in a plane 
turbulent jet. The mean momentum equation was closed using an algebraic stress model relation 
for the Reynolds stress tensor. The full two-dimensional form of the transport equation set was 
retained and solved elliptically. 

The numerical prediction for the pressure field was compared with the experimental data of 
Hussain and Clark.’ The predicted and experimental fields were generally similar; however, the 
overall level predicted for the pressure field was lower than that of the measurements. This 
discrepancy suggests a deficiency in the algebraic stress model for the Reynolds stress ( u z u z  ), 
a systematic error in the pressure measurements or perhaps both. In any event further measure- 
ments of the pressure field in a plane turbulent jet are required to resolve this question. 

With respect to the conservation of mean streamwise momentum in the jet, the contribution of 
the pressure field is negative and opposes that of the streamwise Reynolds stress component 
( u l u l ) .  The contribution of the mean velocity term U: decreases in the streamwise direction to 
an asymptotic value which is approximately 95% of the value at the slot. As such, pressure has 
a relatively small effect on the streamwise momentum balance. 

The present study only briefly considered the flow field in the region immediately downstream 
of the slot. A more in-depth study would require not only a much finer computational grid but 
also documentation of the initial conditions upstream of the discharge plane. However, once 
additional experimental data become available, this flow region would represent an interesting 
test of the performance of an algebraic stress model in a rapidly developing turbulent shear flow. 
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